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ABSTRACT 

A formalism is developed describing the  time evolution 

of wave correlations i n  a uniformly turbulent ensemble of weakly 

nonlinear system8. The s t a t i s t i c s  are  b u i l t  in to  the  formalism 

a pr ior i .  With closure (of t he  hierarchy of equations fo r  wave 

correlations) appropriate t o  the inclusion of resonant three-wave 

interactions,  a (nonlinear) kinet ic  equation f o r  Che two-wave 

correlations is  derived and various praperties of t h i s  equation 

a r e  dirscussed. The effects of both bilinear and t r i l i n e a r  non- 

l i n e a r i t i e s  are considered. Modifications of t he  formalism i n  

s i tuat ions where there  i s  a weak ( l inear )  i n s t a b i l i t y  yk, 

(Ir&jl CC 1) a r e  a l so  considered. 
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I: INTRaDUCTION 

I n  recent years, considerable has been devoted t o  the  

study of the time behavior of weakly nonlinear systems evolving according t o  

equations of the  form 

Dezending on the specific problem, Y(x,t) i s  a f i n i t e  dimension column vector 

whose elements a re  the  physical quantit ies of interest ;  L is a l inear  dif-  

f e ren t i a l  operator with respect t o  the  posi t ion variable x, and E is a bilinear 

d i f f e ren t i a l  operator with respect t o  3 

r y y r ,  

ry 

Dynamical equations of t h i s  form a r i s e  i n  various areas of research. 
2 For example Galeev and Xarprnan u t i l i z e  the  magnetohydrodynamic equations i n  

the  description of a low density plasma in t he  presence of a strong magnetic 

f ie ld .  

bations i n  f lu id  density, f l u i d  velocity and magnetic f ie ld ,  from a spa t ia l ly  

homogeneous, velocity f r e e  equilibrium i n  which there  i s  a uniform magnetic 

f ie ld ,  I&,. 

i n  anharmonic crystals ,  or t he  description of shallaw water waves, Zabusky 

I n  t h i s  case Y(x,t) consists of seven elements, namely, the  pertur- 
- c y  

In  a model relevant t o  the  description of long wavelength phenomera 

and Kruskal 7 make a numerical study of the Korteweg-devries equation, which 

is  of a form similar t o  Eq. (1). H a ~ s e l m a n , ~ ’ ~  i n  investigating the  nonlinear 

interact ions of gravity waves i n  a f l u i d  of constant depth, uses a hydro- 

dynsmic description assuming incompressible, i r ro t a t iona l  motion and that 

pressure effects  a r e  negligible. 

po ten t ia l  and the  displacement of the f r ee  surface. 

makes use of a plasma model consisting of the Maxwell equations and two-fluid 

equations of continuity and momentum transfer.  

In t h i s  model Y(x,t) consists of the  velocity 
6 As a final example, Liixtk 

-GIN 

T h i s  system of equations may 
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a l s o  be cast in to  the form of Eq. (1). In th i s  case there a re  twelve physical 

quantit ies of interest  and hence as many elements of Y(x,t). The operators L 
r u m  

and B occurring i n  the above examples a r e  of varying degrees of complexity 

depending on the expl ic i t  physical problem being investigated. 

N 

The purpose of t h i s  a r t i c l e  i s  t o  develop a formalism describing 

spa t i a l ly  uniform turbulence within the context of the  general dynamical 

equation, Eq. (1). The aforementioned examples a re  t o  be kept i n  mind as 

specific applications. In  order that the  problem be mathematically t ractable ,  

the  turbulence is  assumed weak, corresponding t o  a small amplitude analysis 

of Eq. (1). 

In  Section 11, a Fourier analysis of Eq. (1) with respect t o  the 

posi t ion variable i s  carried out; the resul t ing equation is  then rewritten i n  

a representation i n  which the  basis vectors a re  solutions t o  the  l inear  

equation (12 1 0). For the  purpose of introductory remarks, ve record at t h i s  

point the equation f o r  the  time evolution of the wave amplitude associated with 

the  o%h mode, A (k , t ) ,  i n  t h i s  representation, i.e., a -  

The kernel, K ,  depends on the  de ta i l s  of t he  b i l inear  operator, B and (wa( l c ) )  

are the  eigenvalues of the  l inear  (E 7 0) equation i n  Fourier space. 

assumed i n  Sections 11-V that these eigenvalues a re  real .  

smll amplitude theory of Eq. (2) yields no change i n  Aa i n  lawest order; i n  

higher orders, hmever, the  nonlinear terms a c t  as perturbations which, through 

.y 

It i s  

It is clear  that a 

the  interact ion between waves of differing wave number, causes A, t o  change 
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i n  the  course of time, 

turbulence i n  re la t ion  t o  equations of the above form has t rad i t iona l ly  been 

t o  obtain a perturbation solution t o  come order; '-' then, by performing 

appropriate s t a t i s t i c a l  averages over a spa t i a l ly  homogeneous ensemble a 

The general procedure f o r  t rea t ing  problems of weak 

poster ior i ,  a kinetic equation i s  deduced, describing the  time evolution of 

the correlation between two waves. This may be obtained -. by considering 

sui table  (average) t rans i t ion  probabi l i t ies  per uni t  time as i n  Ref. 2, 

Alternatively, a more elegant treatment (of the par t icular  problem i n  which 

there  a re  only two modes, w 

Benney and Safflnan who carry out a multiple-time perturbation analysis of 

Eq. (2). In a11 cases, huwever, Refs. 1-6 performeappropriate s t a t i s t i c a l  

averages af'ter obtaining the perturbation solution t o  Eq. (2) t o  some order, 

(k) = w(k) and W (k) = -w(k)) has been given by 
a2 1 

- 
These approaches, by t h e i r  very nature are somewhat cumbersame since the 

perturbation solution t o  Eq. (2) en ta i l s  more information than necessary t o  

describe the  ensemble. 

framework i n  which the s t a t i s t i c a l  averaging has been carr ied out a pr ior i .  

A far more d i rec t  approach would be t o  work within a 
a 

This simple concept of "a p r i o r i  s t a t i s t i c s "  i s  a m l i e d  i n  Section 

111, with Eq. (2) as the dynamical equation f o r  an individual system. There 

r e su l t s  a hierarchy of equations describing the  evolution of wave correlations 

characterizing the spa t i a l ly  haogeneous ensemble. The correlation between 

two waves is driven by the correlation between three waves, and i n  turn,  the 

three-wave correlations a re  driven by four-wave correlations, and so on, I n  

Section IY, w i t h  closure of t h i s  hierarchy appropriate t o  the description of 

resonant three-wave interactions,  a simple multiple time analysis r e su l t s  i n  a 

k ine t ic  equation fo r  the correlation between two waves. 

Several properties of  t h i s  kinetic equation re la t ing  t o  the  creation 
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of correlations, invariants of the  equation, multiple resonances, etc. 

discussed i n  Section V. 

and results of Sections III and IV are discussed for  s i t m t i o n s  i n  which there  

are 

In  Section V I ,  the  rAodificatj.ons of the  techniques 

is  a weak ins t ab i l i t y  (or weak damping). 

term, T(I(x t),Y!(x,t),Y(x,t)), i n  Eq. (l), are discussed i n  Section VII. 

The ef fec ts  of including a t r i l i n e a r  

r r r N J  N -  - N  

11: THE BASIC EQUATION IN FOURIER SPACE 

Fourier analyzing with respect t o  the  posit ion variable according t o  

and 

Eq. (1) may be wr i t ten  i n  the  form 

The matrix H (k), and column vector ~ l [ ~ l , ~ ~ ; ~ ( ~ l , t ) , ~ ( ~ ~ , t ) l  depend upon the  

s t ructure  of the operators L and Ell respectively. In addition, Ill is b i l inear  

i n  i t s  Y arguments. Analogous t o  the techniques employed i n  time dependent 

perturbation theory i n  quantum mechanics, it is advantageous t o  rewrite Eq, (4) 

in a representation i n  which the basis vectors a re  solutions t o  the  equation 

' & -  

w 

With 2 ( k y t )  = u(k)e-iwt, w -  t he  eigenfrequencies of Eq. ( 5 )  are  given by the 

charac te r i s t ic  equation 

Det(Wsij-[HOlij) = 0 . 
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For purposes of the present discussion we l i m i t  ourselves t o  s i tuat ions where 

the  solutions t o  Eq. (6) a r e  real. 

ins tab i l i ty ,  the  analysis is a simple extension of the  technique described 

here and is  br ie f ly  discussed i n  Section V I .  Denoting t h e  solutions of Eq. 

(6) by (wa( lc) } ,  where a labels  a part icular  eigenvalue, the  corresponding 

eigenvectors (%(lc)}, are determined from 

In  s i tuat ions where there is a weak 

A t  t h i s  point it is convenient t o  define a row vector u B (k), adjoint t o  the  * -  

column vector u (k),  by the  relat ion + -  
(8) wp(&): B ($1 = B (&)*$($) 

N 

If H is Hermitean, E B (k) is  simply t he  Hermitean adjoint of u (k). t 
250 .y + -  

It follows from Eqs. (7) and (8) that 

and hence the orthogonality condition 

In s i tuat ions where there  i s  a degeneracy associated with cer ta in  eigenvalues 

a simple variation of the  Schmidt orthogonalization procedure may be carried 

out. 

gonal i n  such a way that 

In  any case we assume that (E B (IC)} and (%(E)) have been chosen ortho- 

Writing 

a 

a 
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Equation (11) becomes 

x ew(-i(w (El>.. (52))t)q5-&1-$2) (13 1 5 a2 

Taking the  outer product of Eq. (13) with ua(k), and using the orthogonality 

condition given i n  Eq. (ll), readily yields 
r y -  

where 

To ensure the reality of Y(x,t), we adopt t he  conventions 
d r y  

and 

“ar(-s) = -g:) . 
In  addition, the  symmetry property 

follows direct ly  frm relat ions (14)-(18). 
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Equation (14), advancing the amplitudes Aa i n  time, is  exact i n  the  

context of the  or iginal  dynamical equation; the f o r m ,  however, is more amenable 

t o  a d i rec t  analysis than that of Eq. (4). In  a small amplitude theory of 

Eq, (14), Aa does not change i n  t h e  lowest approxination, thus giving a Y(k,t) 

i n  which waves of different  wave number propagate independently. 

order however, the nonlinear terms ac t  as perturbations causing Aa(ls,t) t o  

change i n  the  course of time through interactions between waves of differing 

wavenumber. 

w r y  

In  higher 

For the purpose of the  study of weak turbulence, the  generalpro- 

cedure i n  the l i t e r a t u r e  

sion, Le., 

has been t o  solve Eq. (14) i n  a perturbation expan- 

h < < 1 ,  - AaC&,0) 

3 Once a solution i s  obtained t o  order h 

a re  then carried out over a spa t ia l ly  homogeneous ensemble. 

which folluws, a formalism is  developed i n  which the s t a t i s t i c a l  averaging 

say, appropriate s t a t i s t i c a l  averages 

In the section - 

is done at the outset. 

individual system, t h i s  method of "a p r i o r i  s t a t i s t i c s "  leads t o  equations of 

evolution f o r  wave correlations characterizing the  spa t ia l ly  homogeneous 

Using Eq. (14) as the  dynamical equation fo r  an 

ensemble. 

8 111: THE HIERARCHY FOR WAVE CORREUTIONS 

We rewrite Eq. (14) i n  the following natation, 
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1 

Equations advancing the  product of two A's i n  terms of the  product of three 

A's, and three A's  i n  terms of four A's, etc., a r e  sirnply constructed frm 

Eq* (201, namely, 

+ (S'*l)}  . . 
0 

The notation, (1 c) 2), denotes the interchange a c) ~2 (": *s2 ) 
Tbe point of view we adopt i s  the following. 

i n t e q r e t e d  as the  dynamical equation f o r  an individual system. 

a col lect ion of such systems and average Eqs. (20)-(22) over t h i s  ensemble. 

, . .A, ) may be viewed as the arithmetic mean of The ensemble average, 

Equation (20) is  t o  be 

We now imagine 

n 
A ... A taken over a large number of systems or as an average over a 
al an 

(probabili ty) d i s t r ibu t ion  of systems, The net result is  an interconnected 

chain of equations whereby the average of the product of s amplitudes, 

(A 

product of s+l amplitudes , namely 

, * , A  ) i s  driven by an integral  operator act ing on the average of the ai "s 
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(23 1 
With the  problem of uniform turbulence i n  mind, OUT basic assumption regarding 

the  ensemble is  that the averages, (A (k ,t).. .A (k .,t)), correspond t o  a as -s ai 
spa t i a l ly  homogeneous situation. In addition, it i s  convenient t o  construct 

from the above chain for  (A (k ,t)), (A ( 5 , t ) A  ($s,t)),.*D) equations fo r  
5 -  a2 a1 -1 

irreducible correlations. The irreducible s-correlation is  defined by sub- 

t ract ing from (A ... A ) a l l  irreducible correlations of lower order. We 
al 

first record these definit ions within the  framework of spa t i a l  homogeneity 
+ and the  assumption that (A ) = 0, and then comment on t h e i r  significance: a: 

a 
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11 

c i s  over permutations of 1,2,.. ,s; the  summation over s t  The sum, {1,2,...,S)' 
i n  the  second term on the  r igh t  hand side of Eq. (28) runs from s'=2 t o  

s'=sM', where s '=s/2 if  s is even and (s-1)/2 if  s i s  odd, etc. M 
Equation (24) corresponds t o  the assumption tha t  Y(x,t) averaged 

A suff ic ient  condition f o r  t h i s  t o  be true,  i f  

r u -  

over the  ensemble i s  zero. 

t r u e  i n i t i a l l y ,  is  

This  follows di rec t ly  from averaging Eq. (20) and u t i l i z ing  re la t ion  (29 ) ,  

whereupon 

Whether or not re la t ion  (29) is t rue depends on the detailed structure of K 
and hence on the  expl ic i t  physical problem being examined; i n  any case, for 

purposes of the present analysis it is assumed throughout the remainder of 
p a s 3  

t h i s  a r t i c l e  that (0,1c2,-&) = 0, and consequently 

The de l ta  functions occurring i n  the def ini t ions (25)-(28) a r e  manifestations 

of t he  spa t i a l  homogeneity of the ensemble, Equation (25) ensures tha t  the 
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average, (yi(El,t)Y (x , t ) ) ,  where Yi is the  i t h  element of the  column vector 

Y, is  invariant under t ranslat ion as it depends on the  difference zl-z2 (see 
j - 2  

Iv 

is invariant under t ranslat ion,  and so on. We remind t h e  reader that the  

def ini t ions of the irreducible correlations, 2G and G, i n  Eqs. (25) and (26), 

a r e  of a par t icular ly  simple form because (Aq(g1,t)) = 0. 

(22), the f o l l w i n g  hierarcky of equations f o r  

3 

Upon using the definit ions of the irreducible correlations i n  Eq. 

G, G,. . . , resul ts :  2 3  

As one continues t o  construct t h e  equations f o r  G, G,... it i s  found tha t  

4G is driven by G and G G terms and i n  general sG i s  driven by 8+1G and 
4 5  

5 2 3  



G G terms, p & ? , m m m  , S - L  The procedure and resu l t ing  s t ructure  of equa- p s+l-p 
t ions  is analogous t o  the derivation of equations f o r  irreducible correlations 

within the BBGKY f O ~ l i ~ m  10 

The hierarchy (32),(33),*mm, represents the dynanical sygttem of 

equations t o  be used i n  descrlblng the evolution of wave correlations charac- 

te r iz ing  the spatially hamogeneous ensemble, Such a description is c lear ly  

p rac t i ca l  only i f  the correlat ion between s waves, ,G, becomes small as the 

number of waves i s  increased, and closure can be obtained at same leve l  of 

description. That t h i s  is i n  f ac t  the case i s  most ea s i ly  demonstrated i n  the 

following manner. 

t o  Eq. (14), we assume t o  leading order that 

Consfstent with assumption of weak nonlinearity i n  re la t ion  

2 G * € ,  € < < I s  

Since G is driven by 2G2G terms, we assume 3 - 

G - e2 t o  leading order. 3 
Similar ly  

3 4G - E 

and i n  general 
s-1 

G W E  S 

(34 1 

It is c lear  frcm Eq. (32) that the  l eve l  of sophistication with which w e  

describe theevolution of the  correlation between two waves, 2G, depends vi ta l ly  

on t h e  accuracy with which w e  describe Gm For example, i n  order t o  calculate 3 

2 

3 

2 G t o  order E and describe the leading order 2G fo r  times t hr 1/~, we need 

G t o  order E*; consequently, 4G and higher correlations can be neglected. 

Similarly, t o  calculate 2G t o  order en and describe the leading order 2G f o r  

times t - l/en-l, closure may be obtained by neglecting n+2G and higher 

correlations.  
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I V :  TEE LWEST ORDER (NOPT-TRIVIAL) KINETIC EQUATION FOR G 
a1a2 

In the  context of the estimates i n  the previous section, we use the  

multiple time perturbation techniques of Friemanl’ and Sandri12 in reference 

t o  the  hierarchy (32),(33),..., with 

and 



. 
0 

From Eq. (39) it i s  clear  t h a t  

Since 2Ga a! does not vary on the short time scale, t, Eq. (41) may be inte- 

grated d i rec t ly  on the t scale t o  give 
1 2  

This equation, when integrated over k , gives an expl ic i t  expression f o r  -3 
I^  \ 

G"' which i s  t o  be substituted i n  the  integrand on the right hand side 
ala2a3 r -  \ 

of Eq. (40) t o  determine the time behavior D f  G'I' on the E t  scale and 
Q1u2 

G ( 2 )  on the t scale. O f  par t icular  in te res t  i s  the evolution of the dominant 
0:1a2 

order G on the  long time scale, et .  This i s  obtained by asking tha t  Eq. 
%?2 ,-. 

(40) not yield a secular solution for  2GG (2) a on the time scale, t ,  as t -+ m. 

yields  a term proportional t o  t i n  G ( 2 )  ; similarly, any Clearly $- G 

portions of the right hand side of Eq. (40) tha t  tend t o  a constant (on the  t 

1 2  a 
E t  2 c y 2  Y 2  

sca le)  fo r  large t, w i l l  give contributions t o  G(2) 

the  secular behavior i n  G ( 2 )  by equating the  net coefficient of t t o  zero, 

secular as t. Removing 
%01=! 

?La2 
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. 
then yields an equation describing the evolution of 

With th i s  i n  mind, we turn t o  an examination of the r igh t  hand side of Eq. (40). 

G on the E t  scale. * ( Y 2  
Upon using e-xpression (42), the  integrand i n  Eq. (40) contains three 

d is t inc t  types of time behavior on the t scale, which can be wri t ten schemati- 

ca l ly  as 

( i i )  

The abbreviations f and g stand for appropriate sums or differences of three 

frequencies. It i s  assumed tha t  K, *G(l), and the  i n i t i a l  value of G(*) on 

the  t scale a re  re la t ive ly  smooth functions of t h e i r  Fourier space arguments 

i n  carrying out t he  kt - integration i n  Eq. (11-0) . Without belaboring algebraic 

d e t a i l s  which have been discussed elsewhere, 8,13 the  following statements can 

be made regarding the time behavior, f o r  large t y  of the  r ight  hand side of 

Eq. (40). 

3 

ry 

Integration over kt of terms involving expression (i), decay as  

In s i tuat ions where a stationary phase analysis is applicable, the 
ry 

t +-. 
behavior f o r  large t is  t o  leading order 

-e , i n  a three dimensional problem 

'+ osc i l la t ion  , i n  a one dimensional problem . 
(43 1 

(44 1 

On t h e  other hand, expression (ii) behaves t o  leading effectively as if  



. 

insofar as integrations over k' a r e  concerned. 

form (43) or (a). 
are purely osci l la tory for  large t as  w e l l  as terms decaying l i k e  expressions 

Corrections t o  t h i s  a r e  of the  
Iy 

Integrations over k' involving ( i i i )  lead t o  terms which 
d b  

(43) or (44). 

It i s  thus evident that the only terms on the right hand s ide of 

Eq. (40) t ha t  yield secular behavior i n  2G(2) a r e  terms involving expression 

( i i ) .  Removal of the  net secular behavior (at) i n  2G(2) f o r  large t readi ly  

gives the equation of evolution for 2G(1) on the  Et scale, namely 

I n  wri t ing Eq. (46), we have u t i l i zed  re la t ion  (45), and the def ini t ion 
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V: COMMENTS ON TH% IU2IETIC EQUATION FOR G'" 

2 (4% 
AL.C 

Equation (46) i s  a nonlinear integral  d i f f e ren t i a l  equation descri- 

bing the  kinetic behavior of the  correlation between two waves G(l) on the  ' 2 %an9 
I C  

E t  time scale. 

afforded by Eq. (46); i n  principle,  however, arined with a solution t o  t h i s  

(nonlinear) equation one could proceed t o  a higher order description of 

In practice one is u6ualJ.y content with the description 

on longer time scales. A notable exception t o  the  complexity of Eq. 

(46) occurs i n  problems where the principal value integrations associated wi th  

give zero contribution, and t h e  condition f o r  resonant three wave interactions,  

cannot be sat isf ied.  I n  th i s  s i tuat ion 

and one must continue t o  higher order with the inclusion of four-wave corre- 

latfons,  4G(3), i n  order t o  obtain a nontr ivial  kinetic equation f o r  G (1) 
2 ala2' 
It w i l l  Such, apparently a re  the circumstances i n  the  work of Hasselman. 4,5 

be assumed however, throughout the  reminder of t h i s  a r t i c l e ,  that we a r e  

dealing with physical problems where the condition fo r  resonant three-wave 

interactions,  Eq. (48), can be sa t i s f ied  at least fo r  cer ta in  modes. 

It i s  evident that the  derivation of the preceding section has been 

very d i rec t  and simple compared t o  t he  usual formalisms which solve Eq. (14) 

t o  a cer ta in  order i n  a perturbation expansion, and then perform appropriate 

s t a t i s t i c a l  averages a posteriori .  Another notable difference is that there  

i s  no apparent reason t o  use the  time scales, t , A t , A  2 t,.**>(A 2 ry E )  as i s  the  



c 
case i n  the techniques of Benney and Ssffman 1 which involve a perturbation 

solution t o  Eq. (14). 

i n  a formalism which describes wave correlations characterizing the ensemble. 

The time scales t, Et,... a r e  quite natural  choices 

The kinetic equation, Eq. (46), f o r  G (l) on the e t  time scale i s  
a1a2 

similar t o  resu l t s  elsewhere i n  the l i t e ra ture .  One point of difference i s  

that we have not (a p r i o r i )  assumed tha t  Ga (1 a 1 i s  zero f o r  a d i s t inc t  from a2. 
1 2  1 

I n  addition, Eq. (46) is  quite general; since no r e s t r i c t ion  has been made t o  

a par t icular  physical problem, the  number of modes, the dimension of Y, and 

the  structure of the kernel K are  quite arbitrary.  

impossible t o  solve without specialization t o  a par t icular  problem, several 

general cmments can be made regarding the  creation of correlations, conser- 

vation l a w s ,  etc. 

* 

Although Eq. (46) i s  

(a) The Creation of Correlations 

We note from Eqs. (17) and (25) that 

T h a t  i s  t o  say, 2Gm(ls) i s  r e a l  and an even function of i t s  k argument; however, 

for  a; dis t inc t  from a2, 2Ga3am i s  i n  general complex. 

nd 

It is  c lear  from the 
I Z  

st ructure  of Eq. (46) and using relations (50), t ha t  if 2 G E A -  is i n i t i a l l y  
I Z  

zero ( for  a d i s t inc t  from a ), it remains so on the t and E t  scales. T h a t  
1 2 

i s  t o  sayy correlations between two different  modes do not develop i n  the 

course of time i f  they a re  i n i t i a l l y  uncorrelated. 

The s i tuat ion i s  considerably different  f o r  the correlation, G (1) 2m’  
between two waves belonging t o  the same mode a. 

i s  a t  l ea s t  one other mode p fo r  which G ( l )  i s  i n i t i a l l y  non zero, the  corre- 

la t ions ,  2 G k ) ,  may be driven in to  the  system even i f  i n i t i a l l y  zero. This i s  

In t h i s  caset provided there 

2 BB 
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. 
simply demonstrated d i rec t ly  from Eq. (46). By hypothesis 

We then have 

X 8 ( W a ( $ l  )-up(E' )-up ($1-5' I 

where we have u t i l i zed  Eq. (19). Clearly if  the equation 

?&l) = W p (k') + W p ( ~ l - $ ' )  

has a solution, 5' = &'(&l), the quantity 

i s  non zero; consequently, the correlation 2 G g )  i s  driven in to  the system 

even though i n i t i a l l y  zero. 

between the a and f3 nodes as manifested by the delta-function i n  Eq. (51). 

The mechanism for  th i s  has been a coupling 

(b) Sign of t h e  Correlations, 2G$' 

Let us assume i n  the  remainder of Section V that the correlation 

between unlike modes i s  i n i t i a l l y  zero. As previously demonstrated t h i s  

remains t rue  on the  t and a t  scales. We now turn  t o  an examination of the  

correlations,  G(l)(k1), between any two l ike  modes. We note that 2Gm($l), 

which is  the energy spectral  density associated with the mode a, is  r e a l  and 

an even function of k by virtue of Eq. (30); i n  addition it i s  non-negative 

a s  is  simply demonstrated by means of a " f i l t e r "  theorem (Appendix A ) ,  i .e.,  

2 a  

-1 
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The above statements can be made a p r i o r i  rrithin the general framework of 

stationary random processes. Consequently, i n  order t ha t  Eq. (46) be an 

acceptable kinetic equation for G(l), it ' 

preserve the non-negative nature 
The following reductio ad absurdum argument i n  f ac t  demonstrates that t h i s  i s  

necessary tha t  t h i s  equation 
of 2Gg). 

the case, 

Take a l l  correlations, eGa cT as i n i t i a l l y  posi t ive definite. 
1 1  

Assume that the correlation t o  first tu rn  negative i s  associated with the  

mode a and that th i s  occurs f o r  Isl = $, 

2 a m  

It follows, that  a t  the . ins tan t  

G(') i s  passing through zero, 

G")(k # k ) 2 0 2 arx &l -0 

and G(')(k ) S 0, f3 dis t inc t  from a. 
2 PP -1 

Also, at the instant 2G$) is  peLssing through zero, Eq. (46) gives 

The right hand side of Eq. (52) i s  manifestly posi t ive def ini te  i n  nature,i.e., 

This contradicts our or iginal  hypothesis of 2Gk) turning negative. The 

argument may be continued t o  show t ha t  no correlations, 2Ga (1) a , t u rn  negative 
1 1  

if a l l  correlations a r e  originally posit ive definite. 
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(c ) Multiple Resonances 

Inherent i n  the derivation of the kinet:c equation f o r  G (I) is 2 act- 
t he  assumption that 

and 

w (k')W8(k-k') * A d  f~ B -  

o ,  

, 
a re  not s a t i s f i ed  simultaneously f o r  some k' (given k). 

t o  be a serious l imitat ion on the  theory, however it i s  of some in te res t  t o  

This does not appear 
cy cy 

understand how t h i s  r e s t r i c t ion  a r i ses  mathematically, and i t s  physical 

implications. 

hSthematically, the  delta-function Fortion Df the  integrand i n  Eq. 

(46), Le . ,  6(ua(k)-w (k')-w6(k-kt)), leads t o  divergent resu l t s  i n  the k'- B -  * c y  cy 

integrat ion i n  s i tuat ions where both Eq. (54) and Eq. (55 )  can be sa t i s f ied  

f o r  t h e  same &'. This d i f f i cu l ty  m y  be traced back t o  the  fact  that replacirg 

i n  calculating the  t 

incorrect under these conditions. 

03 behavior of the various integrals  over 5' , i s  

It may be shown, f o r  example, that i n  a 
one-dimensional problem these integrals  diverge as t 112 . 8 In such situations,  

more general multiple time scales than t>ct,... must be used, 14 since the  

wave-wave interactions take place rapidly and a re  of a more complicated nature. 

Physically, by assuming t h a t  Eq. (54) i s  not s a t i s f i ed  f o r  those k' - 
determined from Eq. (55), we a re  excluding problems i n  which the wave-wave 

interact ions a re  "multiple" i n  the following sense. 

Eq. ( 5 5 ) ,  may be interpreted as the decay of the mode Ua(&) i n to  two componats, 

The resonance condition, 
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. 
w (k') and w (k-k') (or as the  inverse p r o c e ~ s ) . ~  We represent t h i s  schema- B -  6 - -  
t i c a l l y  as 

The group veloci t ies  of the  decay modes w (k') and w6(k-k1) a r e  dw (k')/dk' 

and dw8 (k'-k)/dk' respectively. 
B -  B -  m r y  

These group veloci t ies  a re  c lear ly  equal i f  
. y . y  

condition (54) i s  sat isf ied,  Under such circumstances the associated wave 

disturbances move away with the  sane veLocity and a r e  thus capable of fur ther  

nu l t ip le  interactions with one another. Huwever, under the assumption that 

fo r  those k' such that 
.y 

the  wave disturbances move away from one another and do not further interact  

effectively. 

j d )  €@a si -Part ic le  Conservation Laws 

Let us now emnine certain invariants of Eq. (46), and introduce 

the notation 

We define the  "number Df 

wave vector 5 as 

quasi-particles" associated with the  mode 01 and the 

the  action associated wi th  the mode a. 
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By virtues of the  definit ions (47) and (56), and Eq. (lg), N possesses the 

following symmetry properties: 

and 

In  asking that the  or iginal  dynamical equation, Eq. (14), be derivable from a 

Hamiltonian, Litvak has deduced cer ta in  symmetry properties of the ke rne lK  6 

equivalent t o  the  following statement s . 

Assuming the va l id i ty  of these relations,  the  kinet ic  equation for ,$g)(&) 
m y  be rewritten as 

(61 ) 
where use has been made of Eqs. (56)-(60) and (46). Equation (61) describes 

the  evolution of the number of quasi-particles, n,($,et), due t o  resonant 

three-wave interactions. Since energy and momentum are conserved on the  

microscupic scale, i.e., 

wa($l> = wp(52)  + w,(&3) t 

and 

it may be expected that the total quasi-momentum, 

quasi-energy & /%n (k ,et)w,(kk), a r e  invariants of Eq. (61). 

/dklna(&lc,Et)Isl and t o t a l  

We check that - a -1 
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I t h i s  i s  the  case, 

t h e i r  Fourier arguments, as w e l l  as the  symmetry prcyerties,  (60), it follows 

Making use of the oddness of na and w, as functions of 

that 

S O .  

Similarly , 

a! 

V I :  MODIFICATIONS DUE TO A WEAK INSTABILITY 

We now consider modifications of the  resu l t s  of Sections I11 and IV 

i n  s i tuat ions where there  is a (weak) ins tab i l i ty ,  that is  

where w and r, a r e  r e a l  (Yo! > 0) and M 

In  place of Eq. (12), we now write 

a 
An analysis,  completely amlogous t o  that given i n  Section 11, then yields the 

following equation advancing A (k , t )  i n  time, Le . ,  
5 -l. 
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Equation (66) is  of the same form as Eq. (14) wi th  the  exception of the  

appearance of the term, y (5li)A ($&,t), on the  right hand side. The con- 

s t ruct ion of a hierarchy using Eq. (66) as the  dynamical equation may be 

carried out i n  a manner ident ica l  t o  the  analysis of Section 111. 

% %  

The only 

modification of the equation f o r  sG5a2**,a (s = 2,...) i s  the  inclusion of 

a term 
S 

on the  right hand side, 

A theory describing the  evolution of G ( l )  on the E t  time scale 
Y 2  

may s t i l l  be obtained as i n  Section IV,  if the in s t ab i l i t y  index, lra(~ua(lc)l, 

is  of order e. The s i tua t ion  i n  which the  in s t ab i l i t y  index is  of order unity 

is mathematically intractable  since the  correlations increase by an order of 

magnitude on the  short time suale t ( for  non zero i n i t i a l  values). Writing 

becomes 

3: (r(')($)+${-k ) )  G(') (slc,t,Et, ...) + (r.h.s. of Eq. (40)) . (67) 
a1a2 a2 -1 al 
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c 

The equation describing G (l) on the  E t  time scale i s  then 
?la2 

(68 1 .t (r,h.s. of Eq. (46)) . 
It i s  possible of course that the solution t o  Eq. (68) may be such that 2G (1) 

destroys the  ordering. However, since the driving terms nonlinear i n  *G (1) 

increases by an order of magnitude on the  E t  time scale  and consequently 

a re  of the  same order ( i n i t i a l l y  on the a t  time scale)  as the (unstable) linear 

driving term, the  description by Eq. (68) may be val id  f o r  a considerable 

length of time on the  e t  scale. 

It is often the  s i tuat ion i n  pract ice  that ya(k) varies slowly i n  
m 

time, say on t h e  E t  time scale. Evidently the analysis i n  arr iving at  Eq. 

(68) from Eq. (66) i s  the same, t h e  only exception 

replaced by y (&,et). It should also be pointed 

derivation of Eq. (68) is  the assumption that ra > 
ai 

being that y (k . )  i s  a, -1 
.L 

out that nwhere i n  the  

0 ut i l ized;  consequently, 

t he  resul t ing equation f o r  G ( l )  on the  E t  scale is  equally valid if the  

growth rate, r,, i s  negative corresponding t o  damping. 
ala2 

VII: MaDIFICATIOMS DUE TO TRILINEAR TERMS 

Many problems of physical in te res t  contain i n  addition t o  the  

b i l inear  term, m - m  B(Y,Y), i n  Eq. (l), a t r i l i n e a r  term, $Y,Y,Y), and perhaps 

higher multi l inear terms. Such situations usually a r i s e  when the physical 

model becomes more sophisticated. For example, a plasma description by means 

of the  Btaxwell equations and the  zero pressure two-fluid equations of con- 

t i n u i t y  and momentum t ransfer  can be put i n to  the  form of Eq. (l), w i t h  t he  

only nonlinearity being bil inear.  However, i f  the zero pressure assumption 
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8 

is  relaxed, additional t r i l i n e a r  and higher multilinear terms appear. 

One i s  s t i l l  able t o  carry out an analysis similar t o  that of 

Section 11. With the problem i n  mind of describing the  evolution of G (1) 
a1a2 

on the  E t  time scale, it turns out t o  be necessary t o  include only the  modi -  

f ications presented by t r i l i n e a r  effects. This gives an additional term t o  

the  r ight  hand side of Eq. (14) of the  form. 

i n  order that (Aa (lcl,t)} remain zero if  i n i t i a l l y  SO. With the inclusion of 

expression (69) i n  the  formalism, it is evident that Eq. (32) fo r  2G i s  modi- 

f i ed  by 4G and 2G2G driving terms. 

1 

Similarly Eq. (33) fo r  G is modified by 3 
G and G G driving terms, and so on. To the order necessary t o  describe the  

5 2 3  
evolution G(l) 

and (41), occur i n  Eq. (40) which now has an additional term on the  r ight  hand 

on the  e t  time scale, the only changes i n  Eqs. (39), (40) 
a1a2 

side, namely 
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Carrying out an analysis similar t o  that i n  Section I V  with the inclusion of 

ewression (71), yields  an additional term i n  the equation of evolution f o r  

the  correlation G (l) on the  e t  time scale. In  par t icular ,  the  e q r e s s i o n  
?la2 

CONCLUDING REMARKS : 

Working within a framework i n  which the s t a t i s t i c a l  averaging has 

been carr ied out a p r i o r i  is conceptually, a natural  and d i rec t  approach. 

The simplicity of mathematical analysis ( i n  Section I V )  bears witness t o  the 

p rac t i ca l i t y  of such a foi-malism. 

It is  a l so  evident that few d i f f i cu l t i e s  have been encountered by 

staying within the  context of a quite general nonlinear equation. 

dimension of Y i s  arbi t rary,  and since nowhere has an expl ic i t  form f o r  the  

kernel /(, or ( W  } been assumed, the formalism and resul t ing kinet ic  equation 

Since the  

.y 

a 
f o r  G (I) a re  applicable t o  a wide var ie ty  of physical problems. In addition 

%a2 
it has been demonstrated that a generalization of the technrque fo r  s i tuat ions 

i n  which there  is a weak ins tab i l i ty  or t r i l i n e a r  nonlinearit ies,  i s  a rela- 

t ively simple process. 
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m following "filter" theorem due t o  Kauf'man'' represents a simple 

technique of demonstrating the  non-negative nature of 2G,<lc), and i s  essen- 

t i a l l y  a mathematical formulation of a physical argument given by Papoulis. 16 

For simplicity of notation we a m i t  the subscript a and variable t i n  the  

discussion that follows. 

Let us define a functionA(k) by the  re la t ion  , 
ry 

A($) = F($)A(&) > (A-1 1 

where F(k), the  " f i l t e r "  function, i s  the  Fourier transform of a r e a l  valued 

(but otherwise a rb i t ra ry)  flrnction of X. 

ry 

By vir tue of the  re la t ion  
ry 

* A(-k) Ad =A($> 

We thus have from Eqs. (a), ( A - 1 )  and ( A - 2 )  that 

and 

(A-3 1 

( A - 7 )  

where the quant i t ies  A(x) andA(x) a r e  the (real-valued) inverse Fourier 
.y * 
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4 

, transforms of A(k) andA(k) respectively. Ccmsequently we have the  inequali- - N 

t i e s  : 

and 

(A-8 1 

Relations (A-8) and (A-9) together with the  a rb i t ra r iness  of the 

f i l t e r  function F(k) are  suff ic ient  t o  prove the  f a c t  that G(k) is  non-negatbe. 
N N 

This is most simply seen by the  followirg reductio ad absurdum argument: 

us assume tha t  G(&ls) i s  negative i n  a region R of &-space, and non-negative 

elsewhere. 

Let  

We now choose F ( 5 )  such that 

and F(k) non zero f o r  same region R1 5 R. It then follows that 
N 

which contradicts statement (A-9). Consequently G(&) i s  non-negative. 
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In  t h i s  analysis it i s  not asslmed that $ is Hermitean since t h i s  i s  only 
N 

a sufficient condition f o r  the r e a l i t y  of ( W a ] .  

In  general, for  a spa t ia l ly  homogeneous ensemble, (Aa(k,t)) 3 lGa(t )6(5); 

we make the  additional assumption t h a t  lGa(t) = 0. 
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